Why is the Internet Access in My Hotel So Slow?


The last several times I have stayed in Ireland and London, my wireless Internet became so horrific in the evening hours that I ended up walking down the street to work at the local Internet cafe. I’ll admit that hotel Internet service is hit or miss – sometimes it is fine , and other times it is terrible. Why does this happen?

To start to understand why slow Internet service persists at many hotels you must understand the business model.

Most hotel chains are run by Real Estate and Management type companies, they do not know the intricacies of wireless networks any more than they can fix a broken U-Joint on the hotel airport van. Hence, they hire out their IT – both for implementation and design consulting. The marching orders to their IT consultant is usually to build a system that generates revenue for the hotel. How can we charge for this service? The big cash cow for the hotel industry used to be the phone system, and then with advent of cell phones that went away. Then it was On-Demand Movies (mostly porn) , and that is fading fast. Competing on great free Internet service between operators has not been a priority. However, even with concessions to this model of business, there is no reason why it cannot be solved.

There are a multitude of reasons that Internet service can gridlock in a hotel, sometimes it is wireless interference, but by far the most common reason is too many users trying to watch video during peak times (maybe a direct result of pay on demand movies). When this happens you get the rolling brown out. The service works for 30 seconds or so, duping  you into thinking you can send an e-mail or finish a transaction; but just you as you submit your request, you notice everything is stuck, with no progress messages in the lower corner of your browser. And then, you get an HTTP time out. Wait perhaps 30 seconds, and all of a sudden things clear up and seem normal only to repeat again .

The simple solution for this gridlock problem is to use a dynamic fairness device such as our NetEqualizer. Many operators take the first step in bandwidth control and use their routers to enforcing fixed rate limits per customer, however this will  only provide some temporary relief and will not work in many cases.

The next time you experience the rolling brown out, send the hotel a link to this blog article (if you can get the email out). The  hotels that we have implemented our solution at are doing cartwheels down the street and we’d be happy to share their stories with anybody who inquires.

How to Speed Up Your Internet Connection with a Bandwidth Controller


slow-internet

It occurred to me today, that in all the years I have been posting about common ways to speed up your Internet, I have never really written a plain and simple consumer explanation dedicated to how a bandwidth controller can speed up your Internet. After all, it seems intuitive, that a bandwidth controller is something an ISP would use to slow down your Internet; but there can be a beneficial side to a bandwidth controller, even at the home-consumer level.

Quite a bit of slow Internet service problems are due to contention on your link to the Internet. Even if you are the only user on the Internet, a simple update to your virus software running in the background can dominate your Internet link. A large download often will cause everything else you try (email, browsing) to come to a crawl.

What causes slowness on a shared link?

Everything you do on your Internet creates a connection from inside your network to the Internet, and all these connections compete for the limited amount of bandwidth which your ISP provides.

Your router (cable modem) connection to the Internet provides first-come, first-serve service to all the applications trying to access the Internet. To make matters worse, the heavier users (the ones with the larger persistent downloads), tend to get more than their fair share of router cycles. Large downloads are like the school yard bully – they tend to butt in line, and not play fair.

So how can a bandwidth controller make my Internet faster?

A smart bandwidth controller will analyze all your Internet connections on the fly. It will then selectively take away some bandwidth from the bullies. Once the bullies are removed, other applications will get much needed cycles out to the Internet, thus speeding them up.

What application benefits most when a bandwidth controller is deployed on a network?

The most noticeable beneficiary will be your VoIP service. VoIP calls typically don’t use that much bandwidth, but they are incredibly sensitive to a congested link. Even small quarter-second gaps in a VoIP call can make a conversation unintelligible.

Can a bandwidth controller make my YouTube videos play without interruption?

In some cases yes, but generally no. A YouTube video will require anywhere from 500kbs to 1000kbs of your link, and is often the bully on the link; however in some instances there are bigger bullies crushing YouTube performance, and a bandwidth controller can help in those instances.

Can a home user or small business with a slow connection take advantage of a bandwidth controller?

Yes, but the choice is a time-cost-benefit decision. For about $1,600 there are some products out there that come with support that can solve this issue for you, but that price is hard to justify for the home user – even a business user sometimes.

Note: I am trying to keep this article objective and hence am not recommending anything in particular.

On a home-user network it might be easier just to police it yourself, shutting off background applications, and unplugging the kids’ computers when you really need to get something done. A bandwidth controller must sit between your modem/router and all the users on your network.

Related Article Ten Things to Consider When Choosing a Bandwidth Shaper.

You May Be the Victim of Internet Congestion


Have you ever had a mysterious medical malady? The kind where maybe you have strange spots on your tongue, pain in your left temple, or hallucinations of hermit crabs at inappropriate times – symptoms seemingly unknown to mankind?

But then, all of a sudden, you miraculously find an exact on-line medical diagnosis?

Well, we can’t help you with medical issues, but we can provide a similar oasis for diagnosing the cause of your slow network – and even better, give you something proactive to do about it.

Spotting classic congested network symptoms:

You are working from your hotel room late one night, and you notice it takes a long time to get connected. You manage to fire off a couple emails, and then log in to your banking website to pay some bills. You get the log-in prompt, hit return, and it just cranks for 30 seconds, until… “Page not found.” Well maybe the bank site is experiencing problems?

You decide to get caught up on Christmas shopping. Initially the Macy’s site is a bit a slow to come up, but nothing too out of the ordinary on a public connection. Your Internet connection seems stable, and you are able to browse through a few screens and pick out that shaving cream set you have been craving – shopping for yourself is more fun anyway. You proceed to checkout, enter in your payment information, hit submit, and once again the screen locks up. The payment verification page times out. You have already entered your credit card, and with no confirmation screen, you have no idea if your order was processed.

We call this scenario, “the cyclical rolling brown out,” and it is almost always a problem with your local Internet link having too many users at peak times. When the pressure on the link from all active users builds to capacity, it tends to spiral into a complete block of all access for 20 to 30 seconds, and then, service returns to normal for a short period of time – perhaps another 30 seconds to 1 minute. Like a bad case of Malaria, the respites are only temporary, making the symptoms all the more insidious.

What causes cyclical loss of Internet service?

When a shared link in something like a hotel, residential neighborhood, or library reaches capacity, there is a crescendo of compound gridlock. For example, when a web page times out the first time, your browser starts sending retries. Multiply this by all the users sharing the link, and nobody can complete their request. Think of it like an intersection where every car tries to proceed at the same time, they crash in the middle and nobody gets through. Additional cars keep coming and continue to pile on. Eventually the police come with wreckers and clear everything out of the way. On the Internet, eventually the browsers and users back off and quit trying – for a few minutes at least. Until late at night when the users finally give up, the gridlock is likely to build and repeat.

What can be done about gridlock on an Internet link?

The easiest way to prevent congestion is to purchase more bandwidth. However, sometimes even with more bandwidth, the congestion might overtake the link. Eventually most providers also put in some form of bandwidth control – like a NetEqualizer. The ideal solution is this layered approach – purchasing the right amount of bandwidth AND having arbitration in place. This creates a scenario where instead of having a busy four-way intersection with narrow streets and no stop signs, you now have an intersection with wider streets and traffic lights. The latter is more reliable and has improved quality of travel for everyone.

For some more ideas on controlling this issue, you can reference our previous article, Five Tips to Manage Internet Congestion.

Speeding Up Your Internet Connection Using a TOS Bit


A TOS bit (Type Of Service bit) is a special bit within an IP packet that directs routers to give preferential treatment to selected packets. This sounds great, just set a bit and move to the front of the line for faster service. As always there are limitations.

How does one set a TOS bit?

It seems that only very special enterprise applications, like VoIP PBX’s, actually set and make use of TOS bits. Setting the actual bit is not all that difficult if you have an application that deals with the Network layer, but most commercial applications just send their data on to their local host computer clearing house for data, which in turn, puts the data into IP packets without a TOS bit set. After searching around for a while, I just don’t see any literature on being able to set a TOS bit at the application level. For example, there are several forums where people mention setting the TOS bit in Skype but nothing definitive on how to do it.

However, not to be discouraged, and being the hacker that I am, I could, with some work, make a little module to force every packet leaving my computer or wireless device standard with the TOS bit set. So why not package this up and sell it to the public as an Internet accelerator?

Well before I spend any time on it, I must consider the following:

Who enforces the priority for TOS packets?

This is a function of routers at the edge of your network, and all routers along the path to wherever the IP packet is going. Generally, this limits the effectiveness of using a TOS bit to networks that you control end-to-end. In other words, a consumer using a public Internet connection cannot rely on their provider to give any precedence to TOS bits; hence this feature is relegated to enterprise networks within a business or institution.

Incoming traffic generally cannot be controlled.

The subject of when you can and cannot control a TOS bit does get a bit more involved (pun intended). We have gone over it in more detail in a separate article.

Most of what you do is downloading.

So assuming that your Internet provider did give special treatment to incoming data (which it likely does not), such as video, downloads, and VoIP, the problem with my accelerator idea is that it could only set the TOS bit on data leaving your computer. Incoming TOS bits would have to be set by the sending server.

The moral of the story is that TOS bits that traverse the public Internet don’t have much of a chance in making a difference in your connection speed.

In conclusion, we are going to continue to study TOS bits to see where they might be beneficial and complement our behavior-based shaping (aka “equalizing”) technology.

Five More Tips on Testing Your Internet Speed


By Art Reisman

Art Reisman is currently CTO and co-founder of NetEqualizer

Imagine if every time you went to a gas station the meters were adjusted to exaggerate the amount of fuel pumped, or the gas contained inert additives. Most consumers count on the fact that state and federal regulators monitor your local gas station to ensure that a gallon is a gallon and the fuel is not a mixture of water and rubbing alcohol. But in the United States, there are no rules governing truth in bandwidth claims. At least none that we are aware of.

Given there is no standard in regulating Internet speed, it’s up to the consumer to take the extra steps to make sure you’re getting what you pay for. In the past, we’ve offered some tips both on speeding up your Internet connection as well as questions you should ask your provider. Here are some additional tips on how to fairly test your Internet speed.

1. Use a speed test site that mimics the way you actually access the Internet.

Why?

Using a popular speed test tool is too predictable, and your Internet provider knows this. In other words, they can optimize their service to show great results when you use a standard speed test site. To get a better measure of you speed,  your test must be unpredictable. Think of a movie star going to the Oscars. With time to plan, they are always going to look their best. But the candid pictures captured by the tabloids never show quite as well.

To get a candid picture of your providers true throughput, we suggest using a tool such as the speed test utility from M-Lab.

2. Try a very large download to see if your speed is sustained.

We suggest downloading a full Knoppix CD. Most download utilities will give you a status bar on the speed of your download. Watch the download speed over the course of the download and see if the speed backs off after a while.

Why?

Some providers will start slowing your speed after a certain amount of data is passed in a short period, so the larger the file in the test the better. The common speed test sites likely do not use large enough downloads to trigger a slower download speed enforced by your provider.

3. If you must use a standard speed test site, make sure to repeat your tests with at least three different speed test sites.

Different speed test sites use different methods for passing data and results will vary.

4. Run your tests during busy hours — typically between 5 and 9 p.m. — and try running them at different times.

Often times IPs have trouble providing their top advertised speeds during busy hours.

5. Make sure to shut off other activities that use the Internet when you test. 

This includes other computers in your house, not just the computer you are testing from.

Why?

All the computers in your house share the same Internet pipe to your provider. If somebody is watching a Netflix movie while you run your test, the movie stream will skew your results.

Created by APconnections, the NetEqualizer is a plug-and-play bandwidth control and WAN/Internet optimization appliance that is flexible and scalable. When the network is congested, NetEqualizer’s unique “behavior shaping” technology dynamically and automatically gives priority to latency sensitive applications, such as VoIP and email. Click here for a full price list.

Just How Fast Is Your 4G Network?


By Art Reisman, CTO, www.netequalizer.com

Art Reisman CTO www.netequalizer.com

The subject of Internet speed and how to make it go faster is always a hot topic. So that begs the question, if everybody wants their Internet to go faster, what are some of the limitations? I mean, why can’t we just achieve infinite speeds when we want them and where we want them?

Below, I’ll take on some of the fundamental gating factors of Internet speeds, primarily exploring the difference between wired and wireless connections. As we have “progressed” from a reliance on wired connections to a near-universal expectation of wireless Internet options, we’ve also put some limitations on what speeds can be reliably achieved. I’ll discuss why the wired Internet to your home will likely always be faster than the latest fourth generation (4G) wireless being touted today.

To get a basic understanding of the limitations with wireless Internet, we must first talk about frequencies. (Don’t freak out if you’re not tech savvy. We usually do a pretty good job at explaining these things using analogies that anybody can understand.) The reason why frequencies are important to this discussion is that they’re the limiting factor to speed in a wireless network.

The FCC allows cell phone companies and other wireless Internet providers to use a specific range of frequencies (channels) to transmit data. For the sake of argument, let’s just say there are 256 frequencies available to the local wireless provider in your area. So in the simplest case of the old analog world, that means a local cell tower could support 256 phone conversations at one time.

However, with the development of better digital technology in the 1980s, wireless providers have been able to juggle more than one call on each frequency. This is done by using a time sharing system where bits are transmitted over the frequency in a round-robin type fashion such that several users are sharing the channel at one time.

The wireless providers have overcome the problem of having multiple users sharing a channel by dividing it up in time slices. Essentially this means when you are talking on your cell phone or bringing up a Web page on your browser, your device pauses to let other users on the channel. Only in the best case would you have the full speed of the channel to yourself (perhaps at 3 a.m. on a deserted stretch of interstate). For example, I just looked over some of the mumbo jumbo and promises of one-gigabit speeds for 4G devices, but only in a perfect world would you be able to achieve that speed.

In the real world of wireless, we need to know two things to determine the actual data rates to the end user.

  1. The maximum amount of data that can be transmitted on a channel
  2. The number of users sharing the channel

The answer to part one is straightforward: A typical wireless provider has channel licenses for frequencies in the 800 megahertz range.

A rule of thumb for transmitting digital data over the airwaves is that you can only send bits of  data at 1/2 the frequency. For example, 800 megahertz is 800 million cycles per second and 1/2 of that is 400 million cycles per second. This translates to a theoretical maximum data rate of 400 megabits. Realistically, with noise and other environmental factors, 1/10 of the original frequency is more likely. This gives us a maximum carrying capacity per channel of 80 megabits and a ballpark estimate for our answer to part one above.

However, the actual answer to variable two, the number of users sharing a channel, is a closely guarded secret among service providers. Conservatively, let’s just say you’re sharing a channel with 20 other users on a typical cell tower in a metro area. With 80 megabits to start from, this would put your individual maximum data rate at about four megabits during a period of heavy usage.

So getting back to the focus of the article, we’ve roughly worked out a realistic cap on your super-cool new 4G wireless device at four megabits. By today’s standards, this is a pretty fast connection. But remember this is a conservative benefit-of-the-doubt best case. Wireless providers are now talking about quota usage and charging severely for overages. That translates to the fact that they must be teetering on gridlock with their data networks now.  There is limited frequency real estate and high demand for content data services. This is likely to only grow as more and more users adopt mobile wireless technologies.

So where should you look for the fastest and most reliable connection? Well, there’s a good chance it’s right at home. A standard fiber connection, like the one you likely have with your home network, can go much higher than four megabits. However, as with the channel sharing found with wireless, you must also share the main line coming into your central office with other users. But assuming your cable operator runs a point-to-point fiber line from their office to your home, gigabit speeds would certainly be possible, and thus wired connections to your home will always be faster than the frequency limited devices of wireless.

Related Article: Commentary on Verizon quotas

Interesting  side note , in this article  by Deloitte they do not mention limitations of frequency spectrum as a limiting factor to growth.

The Facts and Myths of Network Latency


There are many good references that explain how some applications such as VoIP are sensitive to network latency, but there is also some confusion as to what latency actually is as well as perhaps some misinformation about the causes. In the article below, we’ll separate the facts from the myths and also provide some practical analogies to help paint a clear picture of latency and what may be behind it.

Fact or Myth?

Network latency is caused by too many switches and routers in your network.

This is mostly a myth.

Yes, an underpowered router can introduce latency, but most local network switches add minimal latency — a few milliseconds at most. Anything under about 10 milliseconds is, for practical purposes, not humanly detectable. A router or switch (even a low-end one) may add about 1 millisecond of latency. To get to 10 milliseconds you would need eight or more hops, and even then you wouldn’t be near anything noticeable.

The faster your link (Internet) speed, the less latency you have.

This is a myth.

The speed of your network is measured by how fast IP packets arrive. Latency is the measure of how long they took to get there. So, it’s basically speed vs. time. An example of latency is when NASA sends commands to a Mars orbiter. The information travels at the speed of light, but it takes several minutes or longer for commands sent from earth to get to the orbiter. This is an example of data moving at high speed with extreme latency.

VoIP is very sensitive to network latency.

This is a fact.

Can you imagine talking in real time to somebody on the moon? Your voice would take about eight seconds to get there. For VoIP networks, it is generally accepted that anything over about 150 milliseconds of latency can be a problem. When latency gets higher than 150 milliseconds, issues will emerge — especially for fast talkers and rapid conversations.

Xbox games are sensitive to latency.

This is another fact.

For example, in may collaborative combat games, participants are required to battle players from other locations. Low latency on your network is everything when it comes to beating the opponent to the draw. If you and your opponent shoot your weapons at the exact same time, but your shot takes 200 milliseconds to register at the host server and your opponent’s shot gets there in 100 milliseconds, you die.

Does a bandwidth shaping device such as NetEqualizer increase latency on a network ?

This is true, but only for the “bad” traffic that’s slowing the rest of your network down anyway.

Ever hear of the firefighting technique where you light a back fire to slow the fire down? This is similar to the NetEqualizer approach. NetEqualizer deliberately adds latency to certain bandwidth intensive applications, such as large downloads and p2p traffic, so that chat, email, VoIP, and gaming get the bandwidth they need. The “back fire” (latency) is used to choke off the unwanted, or non-time sensitive, applications. (For more information on how the NetEqualizer works, click here.)

Video is sensitive to latency.

This is a myth.

Video is sensitive to the speed of the connection but not the latency. Let’s go back to our man on the moon example where data takes eight seconds to travel from the earth to the moon. Latency creates a problem with two-way voice communication because in normal conversion, an eight second delay in hearing what was said makes it difficult to carry a conversion. What generally happens with voice and long latency is that both parties start talking at the same time and then eight seconds later you experience two people talking over each other. You see this happening a lot with on television with interviews done via satellite. However most video is one way. For example, when watching a Netflix movie, you’re not communicating video back to Netflix. In fact, almost all video transmissions are on delay and nobody notices since it is usually a one way transmission.

%d bloggers like this: